The Blood of the Crab (2019)

The Blood of the Crab (2019)

Meghan Owings plucks a horseshoe crab out of a tank and bends its helmet-shaped shell in half to reveal a soft white membrane. Owings inserts a needle and draws a bit of blood. “See how blue it is,” she says, holding the syringe up to the light. It really is. The liquid shines cerulean in the tube.

When she’s done with the show and tell, Owings squirts the contents of the syringe back into the tank. I gasp. “That’s thousands of dollars!” I exclaim, and can’t help but think of the scene in Annie Hall when Woody Allen is trying cocaine for the first time and accidentally sneezes, blowing the coke everywhere. I’m not crazy for my concern. The cost of crab blood has been quoted as high as $15,000 per quart.

The crab’s distinctive blue blood is used to detect dangerous gram-negative bacteria like Escherichia coli (E. coli) in injectable drugs such as insulin, implantable medical devices such as knee replacements, and hospital instruments such as scalpels and IVs. Components of this crab blood have a unique and invaluable talent for finding infection, and that has driven up an insatiable demand. Every year the medical testing industry catches more than half a million horseshoe crabs in order to sample their blood.

But that demand cannot climb forever. There’s a growing concern among scientists that the biomedical industry’s bleeding of these crabs may be endangering a creature that’s been around since dinosaur days. There are currently no quotas on how many crabs one can bleed because biomedical laboratories drain only a third of the crab’s blood, then put them back into the water, alive. But no one really knows what happens to the crabs once they’re slipped back into the sea. Do they survive? Are they ever the same?

Scientists like Owings, who now works as a biologist for the Kentucky Department of Fish and Wildlife, and her colleagues Win Watson, Ph.D., who teaches animal neurobiology and physiology at the University of New Hampshire, and Christopher Chabot, Ph.D., who teaches the same thing at Plymouth State University, are all trying to get to the bottom of it. They’re worried about the toll on the creatures, from the amount of time crabs spend out of the water while in transit, to the extreme temperatures they experience sitting on a hot boat deck or in a container in the back of a truck.

The horseshoe crab plays a vital role in the life of anyone who has received an injectable medicationGetty Images (left); Andrew Tingle (right)

To that end, these two scientists are putting this strange catch to the test. The pair took 28 horseshoe crabs from the Great Bay Estuary behind their lab, left them out in the heat, then drove them around in a car for four hours and then left them in containers overnight to simulate what might happen in a bleeding facility. Then they bled half the crabs (so they’d have a control group that wasn’t bled). All of the crabs remained in containers a second night, as would likely happen at a bleeding lab. The following day, Owings and Watson put $350 transmitters on their backs, attached them snugly with little zip ties, and put the crabs back into the bay to see if they could make their way. What they find might have a lot to say about the future of this odd routine.

The PotentialHorseshoe crab blood is an E. coli detective.

Scientists purify the precious substance—specifically, the crab blood’s clotting agent—into a solution called Limulus Amoebocyte Lysate (LAL). LAL is used to detect gram-negative bacteria like E. coli, which can wreak havoc on humans. Basically, you can divide the bacteria of the world into two groups based on a test developed by Hans Christian Gram, a Danish bacteriologist in the late 1800s. The two classes differ physiologically, especially in the composition of their cell walls. Gram-negative bacteria like E. coli contain a type of sugar called an endotoxin in their cell walls, while gram-positive types like Staphylococcus (of the staph infection) do not. (The “positive” and “negative” refer to how the microorganisms react to a staining test that Gram invented.)

“Every man, woman, and child and domestic animal on this planet that uses medical services is connected to the horseshoe crab.”

Those endotoxins are harmful to human beings and can survive the high heat and harsh conditions under which drugs and medical devices are sterilized and tested. They persist like zombies. Endotoxins disrupt the immune system and make humans susceptible to life-threatening conditions like sepsis. LAL detects these endotoxins by turning from a liquid to a clotted gel when they come in contact with them.

While industry experts say the $15,000-a-quart estimate is high—that figure is more likely the price tag for the coveted amoebocytes that are extracted from the blood—it is testament to how precious LAL has become.

To make enough of it for LAL testing, the biomedical industry now bleeds about 575,000 crabs a year.

The ProblemWhen a species is impacted on land, it’s easy to see the effects. When the adverse effects occur under water, we don’t really know about it—or don’t really care. It’s why we used to dump garbage and toxic chemicals into the water. What happens under water stays under water.

As such, scientists don’t know exactly how single or repeated blood extractions affect horseshoe crabs. But they know enough to be worried.

Andrew Tingle

The crabs are harvested and brought to bleeding facilities, where they are drained of about a third of their blood, before they are returned to the oceanAndrew Tingle

The International Union for Conservation of Nature, which sets global standards for species extinction, created a horseshoe crab subcommittee in 2012 to monitor the issue. The group decided that the American horseshoe crab is “vulnerable” to extinction—a higher level of danger compared to the last Red List assessment in 1996. “Vulnerable” is just one notch below “endangered,” after all. Furthermore, the report said crab populations could fall 30 percent over the next 40 years. This risk varies by region. While populations are increasing in the Southeast and stable in the Delaware Bay, numbers have fluctuated in New England and decreased in New York.

The same story plays out across the Pacific Ocean. The horseshoe crab native to Asia, called Tachypleus, produces its own amoebocyte lysate called Tachypleus Amoebocyte Lysate, or TAL. But horseshoe crabs are already disappearing from beaches in China, Japan, Singapore, Taiwan, and Hong Kong, places where they once thrived. Some fear that if the pharmaceutical industry continues to grow and horseshoe crabs disappear in Asia, companies producing bacterial contaminant identifiers there will set their sights on crabs here, further depleting the U.S. population.

If the species were to dwindle, it wouldn’t just be an issue for conservationists, but for everyone, as LAL is currently the only substance able to detect gram-negative bacteria in the health field. As one conservationist put it, “Every man, woman, and child and domestic animal on this planet that uses medical services is connected to the horseshoe crab.”

“They’re very hardy. But I think they pay a price for that.”

The PingsOwings’s crab transmitters give off a series of acoustic pings every 45 seconds. When the crabs get within 300 to 400 meters of an underwater receiver, that gadget picks up and records the ping. Each ping is different—it indicates which crab was there, how deep it was, and how active it had been in the prior 45 seconds. Every week or two, Owings and Watson sail out in a boat to download the data, and move the receivers if they need to follow the crabs. I rode along on one of these voyages in the fall of 2016.

The Great Bay Estuary is about 60 feet deep in the middle, though the crabs tend to hang out around the edges, foraging for food. As we drive around the waterway, the researchers gaze across the water looking for the moorings that hold the receivers. They nearly lost a receiver once when a boat ran over the rope that held it to the mooring. Thankfully, a secondary rope had been attached that kept the device from dropping to the bottom of the bay.

Andrew Tingle

About three minutes from the dock, we find the first one. Watson pulls a seaweed-covered rope out of the water with a hook and reels it in until he reaches the missile-shaped receiver. Owings takes it from him and inserts a key, enabling the Bluetooth device on her laptop to download the receiver data, a log of every time it detected a crab’s ping.

“It’s frozen,” Owings says.

“The computer? Can you reboot?” Watson says.

“Trying,” she says.

The reboot works. As the data finishes downloading, Owings shouts, “19,000!”—referring to the number of pings the receiver has picked up. She removes the key and drops the device back into the water to continue its task. The world needs that data.

The Catch The Atlantic States Marine Fisheries Commission (ASMFC), which manages the fishery resources along the Atlantic coast, has harvest quotas in place for bait fishermen who use horseshoe crabs to catch eels and conch. But not for biomedical laboratories. They can take as many crabs as they like, and that harvest continues to grow, rising from around 130,000 in 1989 to 483,245 in 2017, according to the ASMFC’s latest stock assessment report. The biomedical labs also bleed some of the bait crabs, before they’re chopped up and used to catch eels and conch, and that figure has also risen, from 40,572 in 2004 to 95,231 in 2017, according to ASMFC data.

“The Commission currently does not have the authority to limit biomedical harvest. It would need to be granted that authority from the U.S. Food and Drug Administration, since any limits on biomedical harvest could potentially impact human health,” says Michael Schmidtke, Ph.D., the Fishery Management Plan Coordinator for ASMFC. Thomas Novitsky, Ph.D., a scientist and former CEO of Associates of Cape Cod, an LAL company in East Falmouth, Massachusetts, is more blunt.

“We were successful in exempting ourselves from quotas,” Novitsky says. “We lobbied the ASMFC, telling them we’re not hurting the crabs. We’re putting them back. We have a very important medical application here, so give us a break and don’t put the regulations on us.”

Colin McSherry

The LAL labs argue that after the crabs are bled, they go back into the water and recover. That assumption is now being questioned. The ASMFC’s decision not to restrict the biomedical industry assumed that some crabs, about 15 percent, would die. But that threshold has been broken in the last 11 years. And evidence is accumulating that the death rate of bled horseshoe crabs is much higher (more like 29 percent), that females may have an impaired ability to spawn, and that bled crabs become disoriented and debilitated for various lengths of time, Novitsky says. In Pleasant Bay on Cape Cod, Massachusetts, where horseshoe crabs are known to be bled for biomedical use, he says fewer females are spawning than in other regions.

“There’s been a dramatic effect,” Novitsky says. “The industry will unite and say these studies were done in a lab, and you can’t compare that with what’s done in nature, but that argument doesn’t hold water.”

Restricting the biomedical harvest is no easy task, and it starts with the red tape. According to Schmidtke, the stock assessments (a measure of how many crabs are out there in the first place) only began taking the biomedical crab harvest into account last year.

More Medical Breakthroughs

But getting a more accurate count is only part of the equation. Even if there were a quota, there’s no guarantee that the organization could enforce it. First there’s the question of authority. “ASMFC has no jurisdiction over the biomedical industry. It’s not a fishery. It’s like ASMFC trying to monitor the tobacco industry,” says Jeff Brust, a research scientist with the New Jersey Department of Environmental Protection.

And then there’s the pure damn necessity. Several companies have come up with synthetic alternatives for detecting the presence of endotoxins in vaccines, medicine, and instruments, using a compound called recombinant factor C (rFC). But for now, LAL is still the FDA’s preferred method for detecting endotoxins.

“There are other tests out there, but since the FDA at one point told people that LAL was the definitive test, people are too afraid to use another test for fear it will negatively impact their FDA approval,” says Lindsay Marjoram, Ph.D., a scientist at Powered Research, a research lab in Research Triangle Park, North Carolina.

While pharmaceutical giant Eli Lilly used an rFC method for endotoxin testing of its migraine drug, Emgality, to date that is the only drug approved by the FDA to use rFC instead of LAL, even though the synthetic test has been available since 2003.

“Yeah, probably the real story is why persist with the harvesting when modern recombinant methods are available,” said Kevin Williams, a scientist at the French company bioMérieux, one of two that manufacture rFC. (The other is the Switzerland-based Lonza.)

Part of the problem is that one of the large bleeding labs has actively tried to undermine the alternatives, saying they don’t work, Williams says.

“[I’ve seen] full-page ads against rFC saying it can’t detect. Data shows it does. They ignore it,” he says.

The StressIt’s hard enough on a creature to lose a large quantity of blood and then survive in the wild. But that’s only part of the problem. According to scientists like Owings and Watson, there’s a growing body of evidence that factors related to the capture and transportation are hurting the crabs, too.

“I imagine when you put them back in the water, if you were to measure their breathing rate, it would be intense,” Watson says, noting that their time spent out of the water has probably made them anaerobic for a while. “If I was put through a period where I couldn’t breathe, and you put me back where you found me, I’d just sit there and breathe for a day.”

In the bleeding process, a needle is inserted into a membrane that runs along the crab’s heart; there’s a chance it could disrupt the crab’s heartbeatAndrew Tingle

Watson says the companies catch so many crabs at one time that they can’t keep them in tanks. There’s just too many. And so the catchers just pile crabs out on the deck of the boat.

“Name me another marine creature who breathes underwater who can survive on land the way they can,” Watson says. “You can’t do that with a fish, or a lobster. They’re very hardy. But I think they pay a price for that.”

The firms involved in this fishing will say they use best management practices in their harvesting, but it’s totally voluntary, open-ended, and vague, Novitsky says, which isn’t surprising. The rules were put forward by representatives of the LAL labs, which sit on ASMFC’s committees. ASMFC has best practices spelled out, but they have neither enforcement nor surveillance capabilities.

“It also made us realize we don’t know what these guys do most of the year.”

“I was getting directives from the ownership that we weren’t profitable enough, and you know how that goes,” said Novitsky, who was pushed out of Cape Cod Associates after it was acquired by a Japanese firm.

Owings and Watson say they don’t want to stop biomedical companies from bleeding crabs. They just want them to do it in a less damaging way. For instance: Companies may not know that when the crabs are bled—or even just held in the laboratory for a long period of time—they have a hard time replenishing their blood supply because their hemocyanin levels remain low, Watson says. Hemocyanin is a protein similar to hemoglobin that transports oxygen through the body. It’s as if the crabs become anemic, and it happens by just taking them out of the water, whether you bleed them or not, though the recovery is worse if they’ve been bled. Their studies have shown that just being in captivity had a negative effect, Owings says.

“Imagine if you had a cow, and every time you milked it, it took a month before it had more milk. That’s the problem here,” Watson says, noting that if you take a quart of blood from a human, the person recovers within days.

Watson also worries that the needle itself impairs something that acts like a pacemaker in the crab’s heart. In the biomedical lab, the needle is inserted into a soft membrane that runs along a hinge in the crab’s shell. But that membrane runs across the crab’s heart. If the needle hits the crab’s pacemaker, it could disrupt its heartbeat permanently. Companies may not even know about that—Watson only does because of his thesis on horseshoe crab neurobiology.

Scientists worry about the toll on the crabs, which can spend as many as 72 hours out of the water in bleeding facilities and containersAndrew Tingle

One other thing: Horseshoe crabs have a strong tidal rhythm. They know when high tide is coming, and they move to the edge of the water. Watson tested this several years ago with a colleague, by building a version of a hamster wheel out of two five-gallon buckets with the openings facing each other but leaving just enough space in between for the crab’s tail. They then placed it inside the buckets and found it would run every 12.4 hours, about the same cycle as the tides.

“It made us realize that the tides were more important to these guys than we thought. I thought it was just during mating season,” he says. It was an important discovery because it meant they would lose that rhythm pretty quickly if you take them out of water and bring them into a lab. “It also made us realize we don’t know what these guys do most of the year. No one observes these guys except when they’re mating.”

He’d eventually like to take some of his discoveries to the medical labs with the hope that they can improve their bleeding practices. If we know the bleeding process reduces the crab’s hemocyanin, which compromises their immune system, feeding them a diet of copper before they are returned to the water might help bring their hemocyanin levels back up, he says. He’d like to sell the idea to the bleeding labs. But to date, he says his attempts to reach them—even to simply confirm that their bleeding simulations are accurate—have gone unanswered.

“I’m not trying to shut the companies down. I just want to see if there’s a better way to do it,” he says.

The Impact There are about a dozen receivers in the water, and when the crabs move far out of range—and they can move several miles in a day—the researchers have to relocate them to make sure the pings continue to be read.

“We’ve used this method for tracking lobsters in the ocean. But sometimes, you’d have to drive around for hours looking for them. At least in here, you can drive down the middle of the bay and find them,” Watson says. We’re sitting in the boat and Owings is holding one of the receivers. She’s trying to get me to hear one of the pings coming from a nearby crab.

“There’s one!” Owings says.

“I didn’t hear it,” I say.

“There!” she says, hearing another ping.

It reminds me of when our smoke alarm battery was dying, and it kept beeping, but my husband and I couldn’t find the detector. For two weeks, the beep would sound but never long enough for us to locate the device. Our dog eventually found it for us.

Watson puts the boat in gear and gets ready to drive off.

“We have to put the receiver back!” Owings says.

“Good point, Meghan,” Watson says.

As we drive off, Watson remarks on how the crabs have a mysterious understanding of where they are in the estuary and where they need to be at different times of year. Horseshoe crabs like the shallow mudflats in the spring, summer, and fall, because they can forage for snails and worms there during high tide. In the cold winter months, they don’t eat much if at all, so it’s hard to know where they go once they descend into deeper, darker waters.

“They disperse,” Watson says. “I don’t know how they find their way.”

And yet they do. There are four hot spots for crabs in the estuary, he says, and you’ll see the same crabs there at certain times of year. He knows this because researchers have tagged them. There are certain spots where the females lay their eggs, the males fertilize them, and the eggs hatch 30 days later, he says, pointing to one of those spots along the shore. And yet the larvae must be carried off by the current to a different location because the juvenile crabs aren’t usually found in the spawning site but rather somewhere else in the estuary, he says. It leads him to believe there’s a complex pattern to their life cycle that we don’t fully understand yet.

Caren Chesler

“Horseshoe crabs have evolved to spawn at specific times, in specific places,” Watson says. “We don’t know how they find these locations, so it is possible that if we bleed them and release them in different locations, or if bleeding influences their navigational capacity, it could disrupt mating and reproduction.”

Results so far show not that bleeding could disrupt mating and reproduction but that it does. Bled females in Watson’s study only attempted to spawn about half as often as those that weren’t bled—a fact that will undoubtedly affect the species population going forward.

When we get back to shore, Watson says he is going scuba diving with two other students. They need to log a certain amount of time in the water to maintain their diving credentials. As he puts on his wetsuit, he tells me about a camera system he and a colleague once mounted on a lobster trap to see what happened when they were caught. What they found was that all but about a tenth of the lobsters were able to escape.

“We were dumbfounded by the results,” he says.

He puts on his weight belt, tank, fins, and goggles and walks to the end of the dock and steps into the water. He walks for a while in the shallow water, and for a time, I can still see the top of his head. But as he swims off, his head begins to disappear under the surface of the water, and he gets one more glimpse of what goes on in the darkness below.

This article was originally published April 13, 2017. It’s been updated with new information after being published in the September 2019 issue of Popular Mechanics. You can subscribe here.

Popular Mechanics T-Shirts on Amazon

Popular Mechanics April 1940 Cover T-Shirt

Popular Mechanics January 1951 cover T-shirt

Popular Mechanics July 1982 Cover T-Shirt

Popular Mechanics October 1943 Cover T-Shirt

Popular Mechanics March 1936 Cover T-Shirt

Popular Mechanics June 1935 Cover T-Shirt

Popular Mechanics November 1923 Cover T-Shirt

Popular Mechanics November 1922 Cover T-shirt

Popular Mechanics January 1994 Cover T-Shirt

Popular Mechanics April 1915 Cover T-Shirt

Popular Mechanics January 1931 Cover T-Shirt

Popular Mechanics June 1926 Cover T-Shirt

This content is created and maintained by a third party, and imported onto this page to help users provide their email addresses. You may be able to find more information about this and similar content at

Read More
Share this on to discuss with people on this topicSign up on now if you’re not registered yet.

Related Articles

Valve has just validated 3000 Games For The Steam Deck

Willy Jetman: Astromonkey’s RevengeSteam Deck Verified2022-05-21Store Page The Princess, the Stray Cat, and Matters of the HeartSteam Deck Verified2022-05-21Store Page YngletSteam Deck Verified2022-05-21Store Page Citizens of SpaceSteam Deck Playable2022-05-21Store Page VirtuaVerseSteam Deck Playable2022-05-21Store Page Shank 2Steam Deck Verified2022-05-21Store Page Chromosome EvilSteam Deck Playable2022-05-21Store Page New Super Lucky’s TaleSteam Deck Playable2022-05-21Store Page DeleveledSteam Deck Verified2022-05-21Store Page…

Stripe Crypto

The crypto ecosystem and its regulatory outlook continue to evolve rapidly, and our feature availability varies by region and use case. Please see our crypto supportability page for more details on our current product availability. Fill out the form to tell us more about what you’re building so we can better understand how to support…

Create your crypto business with Stripe

The crypto ecosystem and its regulatory outlook continue to evolve rapidly, and our feature availability varies by region and use case. Please see our crypto supportability page for more details on our current product availability. Fill out the form to tell us more about what you’re building so we can better understand how to support…

Fish 3.4.0 Released

Notable improvements and fixes fish’s command substitution syntax has been extended: $(cmd) now has the same meaning as (cmd) but it can be used inside double quotes, to prevent line splitting of the results (#159): foo (bar | string collect) # can now be written as foo “$(bar)” # and foo (bar) # can now…