Knowasiak
Mental speed is high until age 60

Mental speed is high until age 60

Hello reader! Welcome, let's start-

My professor says this is magnificent!!
ReferencesNational Prevalence Survey of Age Discrimination in the Workplace (Australian Human Rights Commission, 2015).

Erber, J. T. & Long, B. A. Perceptions of forgetful and slow employees: does age matter? J. Gerontol. B 61, 333–339 (2006).

Google Scholar 

Salthouse, T. A. Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16, 754–760 (2010).

PubMed 
PubMed Central 

Google Scholar 

Jensen, A. R. Clocking the Mind: Mental Chronometry and Individual Differences (Elsevier, 2006).

Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).

CAS 
PubMed 

Google Scholar 

Salthouse, T. A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 13, 140–144 (2004).

Google Scholar 

Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).

PubMed 

Google Scholar 

Schaie, K. W. What can we learn from longitudinal studies of adult development? Res. Hum. Dev. 2, 133–158 (2005).

PubMed 
PubMed Central 

Google Scholar 

Zimprich, D. & Martin, M. Can longitudinal changes in processing speed explain longitudinal age changes in fluid intelligence? Psychol. Aging 17, 690–695 (2002).

PubMed 

Google Scholar 

Oschwald, J. et al. Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change. Rev. Neurosci. 31, 1–57 (2019).

PubMed 
PubMed Central 

Google Scholar 

Frischkorn, G. T. & Schubert, A.-L. Cognitive models in intelligence research: advantages and recommendations for their application. J. Intell. 6, 34 (2018).

PubMed Central 

Google Scholar 

Pachella, R. G. The Interpretation of Reaction Time in Information Processing Research Technical Report (Michigan Univ. Ann Arbor Human Performance Center, 1973).

Schubert, A.-L. & Frischkorn, G. T. Neurocognitive psychometrics of intelligence: how measurement advancements unveiled the role of mental speed in intelligence differences. Curr. Dir. Psychol. Sci. 29, 140–146 (2020).

Google Scholar 

Ratcliff, R., Thapar, A. & McKoon, G. Individual differences, aging, and IQ in two-choice tasks. Cogn. Psychol. 60, 127–157 (2010).

PubMed 

Google Scholar 

Lerche, V. et al. Diffusion modeling and intelligence: drift rates show both domain-general and domain-specific relations with intelligence. J. Exp. Psychol. Gen. 149, 2207–2249 (2020).

PubMed 

Google Scholar 

Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

Google Scholar 

Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

PubMed 
PubMed Central 

Google Scholar 

Ratcliff, R. & Rouder, J. N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347–356 (1998).

Google Scholar 

Voss, A., Nagler, M. & Lerche, V. Diffusion models in experimental psychology: a practical introduction. Exp. Psychol. 60, 385–402 (2013).

PubMed 

Google Scholar 

Fudenberg, D., Newey, W., Strack, P. & Strzalecki, T. Testing the drift–diffusion model. Proc. Natl Acad. Sci. USA 117, 33141–33148 (2020).

CAS 
PubMed Central 

Google Scholar 

Lerche, V. & Voss, A. Experimental validation of the diffusion model based on a slow response time paradigm. Psychol. Res. 83, 1194–1209 (2019).

PubMed 

Google Scholar 

Voss, A., Rothermund, K. & Voss, J. Interpreting the parameters of the diffusion model: an empirical validation. Mem. Cogn. 32, 1206–1220 (2004).

Google Scholar 

Arnold, N. R., Bröder, A. & Bayen, U. J. Empirical validation of the diffusion model for recognition memory and a comparison of parameter-estimation methods. Psychol. Res. 79, 882–898 (2015).

PubMed 

Google Scholar 

McGovern, D. P., Hayes, A., Kelly, S. P. & O’Connell, R. G. Reconciling age-related changes in behavioural and neural indices of human perceptual decision-making. Nat. Hum. Behav. 2, 955–966 (2018).

PubMed 

Google Scholar 

Ratcliff, R., Hasegawa, Y. T., Hasegawa, R. P., Smith, P. L. & Segraves, M. A. Dual diffusion model for single-cell recording data from the superior colliculus in a brightness-discrimination task. J. Neurophysiol. 97, 1756–1774 (2007).

PubMed 

Google Scholar 

Kühn, S. et al. Brain areas consistently linked to individual differences in perceptual decision-making in younger as well as older adults before and after training. J. Cogn. Neurosci. 23, 2147–2158 (2011).

PubMed 

Google Scholar 

Ball, B. H. & Aschenbrenner, A. J. The importance of age-related differences in prospective memory: evidence from diffusion model analyses. Psychon. Bull. Rev. 25, 1114–1122 (2018).

PubMed 
PubMed Central 

Google Scholar 

Dully, J., McGovern, D. P. & O’Connell, R. G. The impact of natural aging on computational and neural indices of perceptual decision making: a review. Behav. Brain Res. 355, 48–55 (2018).

PubMed 

Google Scholar 

Janczyk, M., Mittelstädt, P. & Wienrich’s, C. Parallel dual-task processing and task-shielding in older and younger adults: behavioral and diffusion model results. Exp. Aging Res. 44, 95–116 (2018).

PubMed 

Google Scholar 

McKoon, G. & Ratcliff, R. Aging and IQ effects on associative recognition and priming in item recognition. J. Mem. Lang. 66, 416–437 (2012).

PubMed 
PubMed Central 

Google Scholar 

Ratcliff, R., Thapar, A. & McKoon, G. The effects of aging on reaction time in a signal detection task. Psychol. Aging 16, 323–341 (2001).

CAS 
PubMed 

Google Scholar 

Ratcliff, R., Gomez, P. & McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 111, 159–182 (2004).

PubMed 
PubMed Central 

Google Scholar 

Thapar, A., Ratcliff, R. & McKoon, G. A diffusion model analysis of the effects of aging on letter discrimination. Psychol. Aging 18, 415–429 (2003).

PubMed 
PubMed Central 

Google Scholar 

Spaniol, J., Madden, D. J. & Voss, A. A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. J. Exp. Psychol. Learn. Mem. Cogn. 32, 101–117 (2006).

PubMed 
PubMed Central 

Google Scholar 

Spaniol, J., Voss, A., Bowen, H. J. & Grady, C. L. Motivational incentives modulate age differences in visual perception. Psychol. Aging 26, 932–939 (2011).

PubMed 

Google Scholar 

von Krause, M., Lerche, V., Schubert, A.-L. & Voss, A. Do non-decision times mediate the association between age and intelligence across different content and process domains? J. Intell. 8, 33 (2020).

Google Scholar 

Schubert, A.-L., Hagemann, D., Löffler, C. & Frischkorn, G. T. Disentangling the effects of processing speed on the association between age differences and fluid intelligence. J. Intell. 8, 1 (2020).

Google Scholar 

McKoon, G. & Ratcliff, R. Aging and predicting inferences: a diffusion model analysis. J. Mem. Lang. 68, 240–254 (2013).

PubMed 

Google Scholar 

Theisen, M., Lerche, V., von Krause, M. & Voss, A. Age differences in diffusion model parameters: a meta-analysis. Psychol. Res. 85, 2012–2021 (2020).

Ratcliff, R. & Childers, R. Individual differences and fitting methods for the two-choice diffusion model of decision making. Decision 2, 237–279 (2015).

Google Scholar 

Lerche, V., Voss, A. & Nagler, M. How many trials are required for parameter estimation in diffusion modeling? A comparison of different optimization criteria. Behav. Res. Methods 49, 513–537 (2017).

PubMed 

Google Scholar 

Lee, M. D. & Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course (Cambridge Univ. Press, 2014).

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L. & Köthe, U. BayesFlow: learning complex stochastic models with invertible neural networks. IEEE Trans. Neural Netw. Learn. Syst. 1–15 (2020).

Xu, K., Nosek, B. & Greenwald, A. Psychology data from the race implicit association test on the Project Implicit demo Website. J. Open Psychol. Data 2, e3 (2014).

Google Scholar 

Ratcliff, R. Modeling aging effects on two-choice tasks: response signal and response time data. Psychol. Aging 23, 900–916 (2008).

PubMed 
PubMed Central 

Google Scholar 

Ratcliff, R., Love, J., Thompson, C. A. & Opfer, J. E. Children are not like older adults: a diffusion model analysis of developmental changes in speeded responses. Child Dev. 83, 367–381 (2012).

PubMed 

Google Scholar 

Reuter-Lorenz, P. A. & Park, D. C. How does it STAC Up? Revisiting the scaffolding theory of aging and cognition. Neuropsychol. Rev. 24, 355–370 (2014).

PubMed 
PubMed Central 

Google Scholar 

Payne, B. K. Prejudice and perception: the role of automatic and controlled processes in misperceiving a weapon. J. Pers. Soc. Psychol. 81, 181–192 (2001).

CAS 
PubMed 

Google Scholar 

Conrey, F. R., Sherman, J. W., Gawronski, B., Hugenberg, K. & Groom, C. J. Separating multiple processes in implicit social cognition: the quad model of implicit task performance. J. Pers. Soc. Psychol. 89, 469–487 (2005).

PubMed 

Google Scholar 

Meissner, F. & Rothermund, K. Estimating the contributions of associations and recoding in the implicit association test: the real model for the IAT. J. Pers. Soc. Psychol. 104, 45–69 (2013).

PubMed 

Google Scholar 

Stahl, C. & Degner, J. Assessing automatic activation of valence: a multinomial model of EAST performance. Exp. Psychol. 54, 99–112 (2007).

PubMed 

Google Scholar 

Nadarevic, L. & Erdfelder, E. Cognitive processes in implicit attitude tasks: an experimental validation of the trip model. Eur. J. Soc. Psychol. 41, 254–268 (2011).

Google Scholar 

Heck, D. W. & Erdfelder, E. Extending multinomial processing tree models to measure the relative speed of cognitive processes. Psychon. Bull. Rev. 23, 1440–1465 (2016).

PubMed 

Google Scholar 

Klauer, K. C. & Kellen, D. RT-MPTs: process models for response-time distributions based on multinomial processing trees with applications to recognition memory. J. Math. Psychol. 82, 111–130 (2018).

Google Scholar 

Hartmann, R. & Klauer, K. C. Extending RT-MPTs to enable equal process times. J. Math. Psychol. 96, 102340 (2020).

Google Scholar 

Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).

CAS 
PubMed 

Google Scholar 

Greenwald, A. G., Nosek, B. A. & Banaji, M. R. Understanding and using the implicit association test: I. An improved scoring algorithm. J. Pers. Soc. Psychol. 85, 197–216 (2003).

PubMed 

Google Scholar 

Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

CAS 
PubMed 

Google Scholar 

Klauer, K. C., Voss, A., Schmitz, F. & Teige-Mocigemba, S. Process components of the implicit association test: a diffusion-model analysis. J. Pers. Soc. Psychol. 93, 353–368 (2007).

PubMed 

Google Scholar 

Matzke, D. & Wagenmakers, E.-J. Psychological interpretation of the ex-Gaussian and shifted Wald parameters: a diffusion model analysis. Psychon. Bull. Rev. 16, 798–817 (2009).

PubMed 

Google Scholar 

Schad, D. J., Betancourt, M. & Vasishth, S. Toward a principled Bayesian workflow in cognitive science. Psychol. Methods 26, 103–126 (2020).

PubMed 

Google Scholar 

Lindeløv, J. K. mcp: an R package for regression with multiple change points. Preprint at OSF Preprints https://doi.org/10.31219/osf.io/fzqxv (2020).

Van Rossum, G. & Drake Jr, F. L. Python Tutorial (Centrum voor Wiskunde en Info rmatica, 2006).

Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

Google Scholar 

Bloem-Reddy, B. & Teh, Y. W. Probabilistic symmetries and invariant neural networks. J. Mach. Learn. Res. 21(90), 1–61 (2020).

Download references

Read More
Share this on knowasiak.com to discuss with people on this topicSign Up on Knowasiak.com now if you’re not registered yet.

About the author: Charlie
Fill your life with experiences so you always have a great story to tell
Advertisements

Get involved!

Get Connected!
One of the Biggest Social Platform for Entrepreneurs, College Students and all. Come and join our community. Expand your network and get to know new people!

Discussion(s)

No comments yet
Knowasiak We would like to show you notifications so you don't miss chats & status updates.
Dismiss
Allow Notifications